Grade 12 – Physics

Unit 1: Mechanics

Chapter 1: Energy

Prepared & presented by: Mr. Mohamad Seif

OBJECTIVES

Recall the definition of work of a constant force

Recall Work of a constant force

Recall Work of a constant force

The work done by constant force:

$$W_{\vec{F}} = F \times AB \times \cos(\alpha)$$

 $W_{\overrightarrow{F}}$: work done by the force, expressed in Joule J.

F: applied force, expressed in Newton N

AB: is the distance covered by the box, expressed in meter m.

α: angle between the force and the displacement, expressed in degree.

Application 1:

A box of mass m = 750g slides on a rough surface AB.

The box moves under the action of a force F = 0.75N making an angle $\alpha = 30^{\circ}$ with the horizontal.

The magnitude of friction between the box and the surface is $f_r = 2N$.

Given AB = 150cm and g = 10N/kg.

- m = 0.75Kg; F = 0.75N; $\alpha = 30^{\circ}$; $f_r = 2N$; AB = 1.5m and g = 10N/kg.
- 1)Name all the forces acting on the block, then represent the forces on the figure.

The forces are:

- Weight: \overline{W}
- Normal: \overrightarrow{N}

A Griction: \vec{f}

• Tractive force: \vec{F}

$$m = 0.75Kg$$
; $F = 0.75N$; $\alpha = 30^{\circ}$; $f_r = 2N$; AB = 1.5m and $g = 10N/kg$.

2) Calculate the work done by each force.

Work done by normal force:

$$W_{\overrightarrow{N}} = N \times d \times \cos(\overrightarrow{N}; d)$$

$$W_{\overrightarrow{N}} = N \times AB \times \cos(90)$$

$$W_{\overrightarrow{N}}=0J$$

$$m = 0.75Kg$$
; $F = 0.75N$; $\alpha = 30^{\circ}$; $f_r = 2N$; AB = 1.5m and $g = 10N/kg$.

2) Calculate the work done by each force.

Work done by friction force:

$$W_{\vec{f}} = f \times d \times \cos(\vec{f}; d)$$
 $W_{\vec{f}} = 2 \times 1.5 \times (-1)$

$$W_{\vec{f}} = f \times AB \times \cos(180)$$

$$W_{\vec{f}} = 2 \times 1.5 \times (-1)$$

$$W_{\vec{f}} = -3$$

$$m = 0.75Kg$$
; $F = 0.75N$; $\alpha = 30^{\circ}$; $f_r = 2N$; AB = 1.5m and $g = 10N/kg$.

2) Calculate the work done by each force.

Work done by tractive force:

$$W_{\vec{F}} = F \times d \times cos(\vec{F}; d)$$

$$W_{\overrightarrow{F}} = 0.75 \times 1.5 \times \cos(30)$$

 $W_{\overrightarrow{F}} = 0.97I$

$$m = 0.75Kg$$
; $F = 0.75N$; $\alpha = 30^{\circ}$; $f_r = 2N$; AB = 1.5m and $g = 10N/kg$.

2) Calculate the work done by each force.

Work done by weight:

$$W_{\overrightarrow{W}} = mg(h_i - h_f)$$

$$W_{\overrightarrow{W}} = 0.75 \times 1.5(0 - 0)$$

Grade 12 – Physics

Unit 1: Mechanics

Be Smart
Chapter 1: Energy

Prepared & presented by: Mr. Mohamad Seif

OBJECTIVES

1 Recall the definition of energy and its types.

Determine the Kinetic energy

Energy

Energy: Is the ability to do work.

Object has energy

Work can be done

Energy, as work, is expressed in Joules (J).

- Energy exists in many forms.
- Energy can be transferred from one object to another.
- Energy can be changed from one form to another.
- Energy cannot be created or destroyed.

Energy

Energy

Mechanical Energy (ME): of a system is the sum of its macroscopic kinetic energy KE and macroscopic potential energy PE:

Kinetic Energy (KE)

Kinetic Energy (KE):Energy possessed by a body due to its motion.

Kinetic Energy (KE)

Kinetic Energy of Translation (KE_{trans}):

$$KE_{trans} = \frac{1}{2}mV^2$$

- m: mass of the body, expressed in (kg).
- V: The velocity of the body, expressed in m/s.
- KE_{trans} : Kinetic energy, expressed in (J).

Kinetic Energy (KE)

Application 2:

A ball of mass m = 2Kg starts its motion from rest from A and reaches A B with a speed v = 3m/s as shown in the figure.

Calculate the kinetic energy of the ball at A and at B.

$$KE_A = 1/2mV^2$$
 $KE_A = 0.5 \times 2 \times (0)^2$
 $KE_A = 0J$

$$KE_B = 1/2mV^2$$
 $KE_B = 0.5 \times 2 \times (3)^2$
 $KE_B = 9J$

Grade 12 – Physics

Unit 1: Mechanics

Be Smart
Chapter 1: Energy

Prepared & presented by: Mr. Mohamad Seif

OBJECTIVES

Determine the Gravitational potential energy

ACADEMY

Potential Energy (PE)

Potential Energy (PE): is a form of energy stored in the body

Gravitational Potential Energy (GPE)

Gravitational Potential Energy (GPE):

Gravitational Potential Energy is the energy stored in a body due to the relative position of the system with respect to the reference

$$PE_g = mgh$$

- m: mass of the body, expressed in kg.
- g: gravity, g=10N/kg.
- h: height of the body from the reference expressed in m

Gravitational Potential Energy (GPE)

If the body above reference, then h>0

Reference of GPE $\begin{array}{c} & & & GPE > 0 \\ & & & & \\ & & & \\ & & & & \end{array}$

If the body on reference, then h=0

Reference of GPE $^{\mathsf{M}}$ $^{\mathsf{GPE}} = 0$

Reference of GPE

If the body below reference, then h<0

h *GPE* < 0

Application 4:

A ball (S) of mass m = 1.2Kg moves up an inclined plane making an angle $\alpha = 30^{\circ}$ with the horizontal starting from the bottom O.

The ball reaches point A at a height h from the ground, where OA = 1.5m

Take the horizontal line passing through B as a reference level for gravitational potential energy. Given g = 10N/kg Calculate GPE of the system (ball-earth) at point A.

$$m = 1.2Kg$$
; $OA = 1.5m$; $\alpha = 30$; $g = 10N/kg$;

The gravitation potential energy is:

$$GPE_A = mgh$$

For the triangle AOB: $sin\alpha = \frac{opp}{hyp}$

$$\Rightarrow GPE = 1.2 \times 10 \times 1.5 \times sin30$$

$$GPE = 9J$$

Application 5:

A ball of mass m = 2kg at the top A of an inclined plane making an angle $\alpha = 60^{\circ}$ with the horizontal.

The ball moves down and reaches point O, where AO = 90cm.

The horizontal plane passing through A is a reference level for gravitational potential energy. Given g=10N/kg Calculate GPE of the system (ball-earth) at point O.

$$m = 2Kg; AO = 0.9m; \alpha = 60^{\circ}; g = 10N/kg$$

The gravitational potential energy is:

$$GPE = mgh$$

For the triangle AOB: $sin\alpha = \frac{opp}{hyp}$

$$\Rightarrow GPE = 2 \times 10 \times (-0.9 \times sin60) \Rightarrow GPE = -15.6J$$

$$GPE = -15.6$$

Gravitational Potential Energy/ Pendulum

Gravitational Potential Energy (GPE)/ Pendulum

Gravitational potential energy at point A at a height h above the reference level:

The gravitational potential energy:

$$GPE_A = mgh$$

$$L = h + x \rightarrow h = (L - x)$$

For the triangle AOH:
$$cos\theta = \frac{adj}{hyp} = \frac{x}{L}$$

$$x = Lcos\theta$$

$$h = L(1 - cos\theta)$$

Gravitational Potential Energy (GPE)/ Pendulum

Application 6:

A pendulum is formed of a massless and inextensible string of length L = 90cm, having one of its ends O fixed to a support while the other end carries a particle (S) of mass m = 200 g.

The pendulum is shifted from its equilibrium position to point A making an angle $\theta = 30^{\circ}$.

The horizontal plane passing through B is a reference level for gravitational potential energy. Given g = 10N/kg.

Gravitational Potential Energy (GPE)/ Pendulum

Calculate GPE of the system (pendulum-earth) at point A when it making angle $\theta = 30^{\circ}$ with the equilibrium position.

$$m = 2kg; L = 0.9m; \theta = 30; g = 10N/kg$$

$$GPE_A = mgh = mgL(1 - cos\theta)$$

$$GPE_A = 2 \times 10 \times 0.9(1 - cos30)$$

Grade 12 – Physics

Unit 1: Mechanics

Be Smart
Chapter 1: Energy

Prepared & presented by: Mr. Mohamad Seif

OBJECTIVES

Determine the Elastic Potential energy of a particle

VACADEMY

Elastic Potential Energy (EPE): is stored in elastic objects such

as rubber bands, springs, ...

$$EPE = \frac{1}{2}kx^2$$

 l_0 : initial length

$$x = \begin{cases} l - l_0 \ (elongation \\ l_0 - l \ (compression) \end{cases}$$

$$EPE = \frac{1}{2}kx^2$$

- EPE: elastic potential energy, expressed in J.
- K: spring constant (stiffness) expressed in N/m.
- x: The compression or elongation of the spring, expressed in m.

ACADEMY

$$EPE = \frac{1}{2}kx^2$$

Horizontal spring

Vertical spring

Application 7:

Consider a box (S) of mass m = 500g is connected to a spring

(R) of free length $l_0 = 25cm$.

The stiffens of the spring is k = 20N/mThe spring is elongated by a distance xand become has a length l = 35cm.

- 1. Calculate the variation in length Δl .
- 2. Calculate the elastic potential energy stored in the spring when it is elongated by $x = \Delta L$

$$m = 500g; l_0 = 25cm; k = 20N/m; l = 35cm.$$

1. Calculate the variation in length Δl .

$$x = \Delta L = l - l_0$$

2. Calculate the elastic potential energy stored in the spring when it is elongated by $x = \Delta L$

$$EPE = 1/2kx^2$$
 \rightleftharpoons $EPE = 0.5 \times (20) \times (0.1)^2$

$$EPE = 0.1J$$

Grade 12 – Physics

Unit 1: Mechanics

Be Smart
Chapter 1: Energy

Prepared & presented by: Mr. Mohamad Seif

OBJECTIVES

1 Determine the mechanical energy of a particle

2 Determine the internal energy of a particle

3 Determine the total energy of a system

The Mechanical Energy of a system at a certain point is:

the sum of kinetic energy and potential energy of a system at a certain point, expressed in J

Application 8:

A particle (S) of mass of m = 1.25 Kg starts A its motion from rest from A.

The particle reaches point B, 3.1m above the ground with a speed of 2.5m/s.

Take the ground as reference level for gravitational potential energy. Given g = 10N/kg.

- 1)Calculate the mechanical energy of the system[(S)-earth] at point A.
- 2)Calculate the mechanical energy of the system[(S)-earth] at point B

$$m = 1.25kg$$
; $h_A = h_B = 3.1m$; $V_B = 2.5m/s$; g=10N/kg.

1)Calculate the mechanical energy of the system[(S)-earth] at point A.

$$ME_A = KE_A + (GPE)_A$$

$$ME_A = \frac{1}{2}mV_A^2 + mgh_A$$

$$m = 1.25kg$$
; $h_A = h_B = 3.1m$; $V_B = 2.5m/s$; g=10N/kg.

2) Calculate the mechanical energy of the system[(S)-earth] at point B.

$$ME_B = KE_B + (GPE)_B$$

$$ME_B = \frac{1}{2}mV_B^2 + mgh_B$$

Internal Energy (Thermal energy): U

Internal Energy (U): is defined as the energy due to the random, disordered motion of molecules of a body

Internal Energy (Thermal energy): U

 $U = KE_{Microscopic}$ (change of temperature)+ $PE_{Microscopic}$ (change of state)

Solid

Gas

Total Energy of the system (E)

Total Energy = Mechanical Energy + Internal Energy (Thermal) Energy – isolated system: system does not exchange energy with

surrounding

The total energy is conserved:

$$E = ME + U = constant$$

$$\Delta \mathbf{U} = -\Delta \mathbf{M} \mathbf{E}$$

Grade 12 – Physics

Unit 1: Mechanics

Be Smart
Chapter 1: Energy

Prepared & presented by: Mr. Mohamad Seif

OBJECTIVES

1 Apply the principle of conservation of ME energy

2 Apply the principle of non-conservation of ME energy

A body moves from point A to point B. The mechanical energy of the system is conserved if:

The non-conservative forces (friction, air resistance, braking force, traction forces, damping force...) are zero or neglected. (ex: $f_r = 0$).

Application 9:

A car considered as a particle of mass 500kg starts with a speed of 20m/s from the bottom A of an inclined plane making an angle $\alpha = 30^{\circ}$ with the horizontal.

The car cuts 35.1m reaches point B at a height h above the ground with a speed of 7m/s.

- 1. Calculate the mechanical energy of the system[car-earth] at point A.
- 2. Calculate the mechanical energy of the system[car-earth] at point B.
- 3. Compare the mechanical energy at A and B, then deduce

$$m = 500kg; V_A = 20m/s; \alpha = 30^\circ; AB = 35.1m; V_B = 7m/s$$

1.Calculate the mechanical energy of the system[car-earth] at point A.

$$ME_A = KE_A + PE_A$$

$$ME_A = \frac{1}{2}mV_A^2 + mgh_A$$

$$m = 500kg; V_A = 20m/s; \alpha = 30^{\circ}; AB = 35.1m; V_B = 7m/s$$

2.Calculate the mechanical energy of the system[car-earth] at point B.

$$ME_B = KE_B + PE_B$$

$$ME_B = \frac{1}{2}mV_B^2 + mgAB.sin\alpha$$

$$ME_B = \frac{1}{2}mV_B^2 + mgAB.sin\alpha$$
 $sin\alpha = \frac{h}{AB} \rightarrow h = AB.sin\alpha$

$$ME_B = 0.5 \times 500 \times (7)^2 + 500 \times 10 \times 35.1 \times sin30$$
 $ME_B = 100,000$ J

3. Compare the mechanical energy at A and B, then deduce.

$$ME_A = ME_B = 100,000J$$

Then the mechanical energy is

conserved.

The frictional forces are neglected $(f_r = 0)$.

Non – conservation of Mechanical Energy

A particle moves from point A to point B. If the non-conservative forces acting on the body is not neglected, then:

The mechanical energy of the system[body-earth] is NOT conserved. $(f_r \neq 0)$ $ME_A \neq ME_B$

 $PE_g = 0$

The variation of mechanical energy between these two points equal to sum of work done by these forces.

$$\Delta M.E = \sum W_{non-cons}$$

The work done by friction appears as a heat

